CRT: Calibration issues

November 2009 test campaign data analysis

CRT review @ Fermilab May 2010

Christophe Magneville IRFU / SPP

- Electronic chain and beam forming test campaign at Pittsburgh, November 2009
- Eight (8) dipoles (+LNA / RF filter) used on each CMU cylindrical reflector: total 16 channels
- Saclay-Orsay Electronic chain
 - Analog module: Amplifier/Mixer/Filter
 - 16 x 500 MHz digitizer channels (4 boards x 4 ch) with FFT on FPGA
 - 8 x 5 Gbit/s optical fiber data transmission to acquisition computer
 - Object oriented (C++) acquisition and processing software

 West
 I
 2
 3
 4
 5
 6
 7
 8

South
East I
 2
 3
 4
 5
 6
 7
 8

- Compute East dipole- West dipole visibilities <Ei Wj*> (8^2=64 visibilities)
- Time average ~ 1 sec , frequency average ~ 666 kHz , Total Bandwidth ~ 29.3 MHz (FFT resolution = ~ 61 kHz)
- Observed sources: CygA (89 deg), CasA (71 deg), Sun (29 deg) on November 23rd, 24th
- Low duty cycle acquisition (2-3%) in Nov. 2009 due to acquisition computer limitations. Current digitizer board can handle 50% duty cycle

- Fit fringes model on each of the 64 <Ei Wj*>(time)
- Gives relative complex gain amplitude/phase (gi gj*) (for each visibility (dipole pair)

North-South digital beam formed toward CasA

$$\langle B_W B_E^* \rangle = \sum_{i,j} \langle E_i W_j^* \rangle_{corr}$$

- Fitted model
- Difference

- Correct each dipole-dipole visibility for the complex gain
- Combine them to form a digital beam

North-South digital beam formed toward CygA

$$< B_W B_E^* > = \sum_{i,j} < E_i W_j^* >_{corr} \times \exp\left[-2i\pi \frac{\Delta x_{ij}}{\lambda} (\sin z_{CygA} - \sin z_{CasA})\right]$$

Correct each dipoledipole visibility for the complex gains computed on CasA

2D digital beam forming on CasA (<29 MHz>)

Individual antenna gain - module

Black = visibility gain datas

- FFT beam forming requires the knowledge of individual dipole gains
- Determine the 16 dipole complex gains (gi) using redundancies (64 gi gj* visibility gains)
- Gains dispersion about 6dB (factor ~4) for around 90dB gain
- RMS model/gains ~ 1%

Red = fitted gain model, from individual dipole gains

Individual antenna gain - phase

RMS model/phase ~ cm

Black = visibility phase datas

Future calibration plan

- Reasonable determination of dipole complex gains despite the low signal / noise ratio in november (due to acquisition limitations)
- Significant increase in duty cycle (x 5) foreseen for the next observation campaign in fall 2010. 100% duty cycle (efficiency) envisaged for future
- Better S/N ratio → increase in number of calibration sources
- Complementary calibration methods (Work in progress by J. Marriner / FNAL)

- The calibration strategy will include at least two time scales:
 - short time scale (10'-1 hour) monitoring, possibly using artificial excitation systems (capacitive coupling or far field source)
 - long time scale (~ day) and antenna pattern monitoring using multiple sources on sky
 - Large number of calibration sources will allow us to monitor the complex gains and determine angular and frequency response for each receiver (dipole)
- The computation of visibilities will be multiplex in time (not all visibilities are computed at once)
- Future observations at Pittsburgh (and Nancay) will allow us to refine the calibration scheme (fall 2010)

Backup

Fitted Model for E-W visibilities

- $<S1.S2*> = (M_{re}(F) + j M_{im}(F))$ + $G * R(F) * Lobe(W_{cyl}, q_0) * exp{ 2 j p F/c * [d + d'*(F-F_0)/F_0$ - $(25m+D) * 1.003 * cos(d) *(t-t_{max})] }$
 - Clean data for RFI !!!!!
 - M_{re}(F), M_{im}(F) : fit for flat correlated noise
 - G * R(F) = one G, FIX freq shape with media filtering on data
 - t = time, $t_{max} = time$ of transit <u>FIXED</u>
 - F = frequency, $F_0 = central frequency$

 - d = path N-S + electronic delay , d' = freq depend delay
 - D = extra path delay E-W (w.r.t. 25m) FIXED
- Fit 1D in (t) by averaging in <F> OR Fit 2D in (t,F)
- Time average ~ 1 sec , frequency average ~ 666 kHz , BW ~ 29.3 MHz

16

Sun24nov lobe self-calib

Lower delta -> more fringes

Also larger cyl width -> more fringes

Low elevation -> model not so good

See residual on 2D plot

Cylinder width on lobe*lobe

Redo fit on <lobe * lobe> and compute:

```
- CasA24: Wcyl = 6.77 \text{ m}
```

- CasA23: Wcyl = 6.69 m
- CygA24: Wcyl = 7.56 m
- CygA23: Wcyl = 7.47 m
- Sun24: Wcyl = 4.90 m
- Sun23: Wcyl = 5.00 m

Scan lobe N-S for SunA24nov <29 MHz> /home/viscan:real%c Real Nyquist Real Sur home/viscan:mod*mod&c Mod^2 90N 90S zenith Non-sym. Shape Remember that N-S lobe is $sin(N^*x)/sin(x)$ with x=sin(q)90N 90S

Grating lobes computation for SunA24 and CasA24

N-S lobe shape

CasA24 ~ 20 deg from zenith

